Die Zufallsvariable X, die den Gewinn beshreibt, kann die Werte x0 = 0, x1 =10, x2 =20, x3 =40, x4 =80 annehmen. Die Wahrscheinlichkeit für die einzelnen Ergebnisse kann mit der Bernoull-Verteilung berechnet werden.
Für den Erwartungswert gilt dann bei einem Einsatz von 10 Euro je Spiel:
$$EX=-10+\sum _{ k=0 }^{ 4 }{ { x }_{ k }*P(X={ x }_{ k }) }$$$$=-10+\sum _{ k=0 }^{ 4 }{ { x }_{ k }*\left[ \begin{pmatrix} 4 \\ k \end{pmatrix}*\left( \frac { 1 }{ 6 } \right) ^{ k }*\left( \frac { 5 }{ 6 } \right) ^{ 4-k } \right] } =-\frac { 85 }{ 27 } \approx -3,15$$
Für die Standardabweichung gilt:
$${ \sigma }_{ X }=\sqrt { Var(X) }$$$$ =\sqrt { E({ { (X-E(X)) }^{ 2 }) } }$$$$=\sqrt { \frac { 1 }{ 5 } \sum _{ k=0 }^{ 4 }{ { (x_{ k }+3,15) }^{ 2 } } } \approx 43,6$$