Mit der Definition des uneigentlichen Integrals ergibt sich
\(\begin{aligned} \int \limits_{0}^{\pi} \frac{1}{\sin (x)^{p}} \mathrm{~d} x=\lim \limits_{\alpha \rightarrow 0^{+}} \int \limits_{\alpha}^{1} \frac{1}{\sin (x)^{p}} \mathrm{~d} x+\lim \limits_{\beta \rightarrow \pi^{-}} \int \limits_{1}^{\beta} \frac{1}{\sin (x)^{p}} \mathrm{~d} x .\end{aligned} \)
Unser Ziel ist es, hier das Minorantenkriterium zu verwenden. Wir betrachten die Taylorexpansion von \( \sin (x) \) mit Lagrange Restterm um \( x=0 \) :
\(\begin{aligned} \sin (x)=x-\frac{x^{3}}{6}-\frac{\sin (\xi)}{24} x^{4}, \quad x, \xi \in[0,1]\end{aligned} \)
wobei wir insbesondere \( \sin (x) \leq x \) für \( x \in[0,1] \) schliessen. Also haben wir
\(\begin{aligned} \frac{1}{x} \leq \frac{1}{\sin (x)} \Longrightarrow \frac{1}{x} \leq \frac{1}{x^{p}} \leq \frac{1}{\sin (x)^{p}}, \quad x \in(0,1] .\end{aligned} \)
Wegen
\(\begin{aligned} \lim \limits_{\alpha \rightarrow 0} \int \limits_{\alpha}^{1} \frac{1}{x} \mathrm{~d} x=\lim \limits_{\alpha \rightarrow 0}-\ln (\alpha)=\infty\end{aligned} \)
ergibt sich mittles des Minorantenkriteriums, dass das Integral nicht konvergiert. Den zweiten Teil der Summe der beiden Integrale musst du nun garnich überprüfen, du weisst ja schon, dass es nicht konvergiert.
Im nachhinein habe ich wohl die Frage falsch gedeutet.