Aloha :)
Wir suchen die Extrema einer Funktion \(f\) unter einer konstanten Nebenbedingung \(g\):$$f(x;y;z)=y(z^2+x^2)-3y^2\quad;\quad g(x;y;z)=y^2+\frac12(x+z)^2-9\stackrel!=0$$
Nach Lagrange muss in einem Extremum der Gradient der zu optimierenden Funktion eine Linearkombination der Gradienten aller Nebenbedingungen sein. Da hier nur eine Nebenbedingung vorliegt, heißt das:$$\operatorname{grad}f(x;y;z)=\lambda\cdot\operatorname{grad}g(x;y;z)$$Der Proportionalitätsfaktor \(\lambda\) ist der Lagrange-Multiplikator. Wir rechnen das aus:$$\begin{pmatrix}2xy\\z^2+x^2-6y\\2yz\end{pmatrix}=\lambda\begin{pmatrix}x+z\\2y\\x+z\end{pmatrix}$$
Ein Vergleich der Gleichungen für die 1-te und die 3-te Koordinate liefert sofort \(xy=yz\). Daher ist \(x=z\) oder \(y=0\) und wir betrachten 2 Fälle:
Fall 1: \(y=0\)$$\begin{pmatrix}0\\z^2+x^2\\0\end{pmatrix}=\lambda\begin{pmatrix}x+z\\0\\x+z\end{pmatrix}\implies x+z=0\,\land x^2+z^2=0\implies x=0\;\land z=0$$Diese Lösung verletzt die Nebenbedingung und scheidet daher aus.
Fall 2a: \(x=z=0\)$$\begin{pmatrix}0\\-6y\\0\end{pmatrix}=\lambda\begin{pmatrix}0\\2y\\0\end{pmatrix}\implies y\in\mathbb R\text{ beliebig}$$Setzen wir \(x=z=0\) in die Nebenbedingung ein, erhalten wir \(y=\pm3\).
Fall 2b: \(x=z\ne0\)$$\begin{pmatrix}2xy\\2x^2-6y\\2xy\end{pmatrix}=\lambda\begin{pmatrix}2x\\2y\\2x\end{pmatrix}$$Für \(y=0\) wäre die erste Koordinatengleichung verletzt, daher muss auch \(y\ne0\) gelten. Weiter muss \(\lambda=y\) sein, damit die erste Koordinatengleichung korrekt ist. Dann lautet die 2-te Koordinatengleichung:$$2x^2-6y=2y^2$$Andererseits folgt für \(x=z\) aus der Nebenbedingung:$$2x^2+y^2=9$$Dieses kleine Gleichungssystem hat drei Lösungen:$$x=\pm2\;\land\;y=1\quad\text{oder}\quad x=0\,\land\,y=-3$$Die letzte Lösung mit \(x=0\) fällt allerdings weg, da wir den Fall \(x\ne0\) betrachten.
Wir fassen alle unsere gefundenen Extremwert-Kandidaten zusammen:$$K_1(0|3|0)\quad;\quad K_2(0|-3|0)\quad;\quad K_3(-2|1|-2)\quad;\quad K_4(2|1|2)$$
Jetzt solltest du noch prüfen, ob es sich tatsächlich um Extremwerte handelt...