0 Daumen
341 Aufrufe

Hallo,

Ich möchte folgende Funktion differenzieren:

f : IR^3 -> IR^3 , ((x1 x2 x3))^T |-> x × y

Ich verstehe aber nicht wieso die Funktion als Definitionsmenge IR^3 und nicht IR^3 × IR^3.

Für mich macht das obere nicht wirklich Sinn…

Ich bedanke mich für eine Erklärung!

Mit freundlichen Grüßen

Avatar von

Ist das vielleicht für festes y gemeint?

Nein, der Antwortgeber( aus einem anderen Forum) meinte das tatsächlich so. Mein Anliegen war einfach die Frage, wie man ein Vektorprodukt differenziert. Mir ist bewusst, dass hier die Produktregel verwendet werden muss, aber ich würde gerne wissen, warum.

1 Antwort

0 Daumen
 
Beste Antwort

Aloha :)

Für das Vektorprodukt gilt die Produktregel:

$$\frac{d}{dx}\left(\vec f\times\vec g\right)=\frac{d}{dx}\left(\begin{array}{c}f_2\cdot g_3-f_3\cdot g_2\\f_3\cdot g_1-f_1\cdot g_3\\f_1\cdot g_2-f_2\cdot g_1\end{array}\right)=\left(\begin{array}{c}\frac{d}{dx}(f_2\cdot g_3-f_3\cdot g_2)\\\frac{d}{dx}(f_3\cdot g_1-f_1\cdot g_3)\\\frac{d}{dx}(f_1\cdot g_2-f_2\cdot g_1)\end{array}\right)$$$$\phantom{\frac{d}{dx}\left(\vec f\times\vec g\right)}=\left(\begin{array}{c}f_2'\cdot g_3+f_2\cdot g_3'-f_3'\cdot g_2-f_3\cdot g_2'\\f_3'\cdot g_1+f_3\cdot g_1'-f_1'\cdot g_3-f_1\cdot g_3'\\f_1'\cdot g_2+f_1\cdot g_2'-f_2'\cdot g_1-f_2\cdot g_1'\end{array}\right)$$$$\phantom{\frac{d}{dx}\left(\vec f\times\vec g\right)}=\left(\begin{array}{c}f_2'\cdot g_3-f_3'\cdot g_2\\f_3'\cdot g_1-f_1'\cdot g_3\\f_1'\cdot g_2-f_2'\cdot g_1\end{array}\right)+\left(\begin{array}{c}f_2\cdot g_3'-f_3\cdot g_2'\\f_3\cdot g_1'-f_1\cdot g_3'\\f_1\cdot g_2'-f_2\cdot g_1'\end{array}\right)$$$$\phantom{\frac{d}{dx}\left(\vec f\times\vec g\right)}=\frac{d\vec f}{dx}\times \vec g+\vec f\times\frac{d\vec g}{dx}$$

Avatar von 152 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community