0 Daumen
166 Aufrufe

Sei n ∈ N, X = {0, 1, . . . , n} und p(x; p) = (n über x) p^x(1 − p)^n−1, p ∈ (0, 1), und sei c > 0.


a) Zeigen Sie, dass für jedes p ∈ (0, 1) gilt

{x ∈ {0,1, ..., n} -c <= \( \sqrt{n} \) \( \frac{x/n -p}{\sqrt{p(1-p)}} \) <= c} = {x ∈ {0,1,...,n | p ∈ I(x)}

wobei I(x) = [U (x), O(x)] mit

U(x) = max(\( \frac{x + c^2/2}{n+c^2} \)  - \( \frac{c(n x/n (1-x/n) + c^2 / 4)^1/2}{n+c^2} \), 0),

O(x) = min (\( \frac{x+c^2 /2}{n+c^2} \)  + \( \frac{c(n x/n(1-x/n) + c^2 / 4)^1/2}{n+c^2} \) , 1).

Avatar von

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community