Hallo,
y'= -\( \frac{x}{y+1} \) ->Lösung via Trennung der Variablen
dy/dx= -\( \frac{x}{y+1} \) | *dx
dy=-\( \frac{x}{y+1} \) *dx |*(y+1)
(y+1)dy= -xdx
y^2/2 +y= -x^2/2 +C | *2
y^2 +2y= -x^2 +2C |+1
y^2 +2y +1 = -x^2 +1+2C ->2C=C1
(y+1)^2= -x^2 +1+C1 |√
y+1= ±√(-x^2 +1+C1) |-1
y= ±√(-x^2 +1+C1) -1 allgemeine Lösung
AWB: y(0) =1 ->negative Lösung entfällt
y= √(-x^2 +1+C1) -1
1=√1+C1) -1 |+1
2=√1+C1) |(..)^2
4=1+C1
C1=3
----->
y= √(-x^2 +4) -1