Aufgabe:
Ist meine Loesung korrekt?
\( \begin{aligned} & \lim \limits_{n \rightarrow \infty}\left(\sqrt{n^{2}+3 n+1}-n\right) \\ \Rightarrow & \sqrt{n^{2}+3 n+1}-n \cdot\left(\frac{\sqrt{n^{2}+3 n+1}+n}{\sqrt{n^{2}+3 n+1}+n}\right) \\ \Rightarrow & \frac{n^{2}+3 n+1-n}{\sqrt{n^{2}+3 n+1}+n}=\frac{n^{2}\left(1+\frac{3}{n}+\frac{1}{n^{2}}-\frac{1}{n}\right)}{n^{2}\left(\sqrt{1+\frac{3}{n}+\frac{1}{n^{2}}+\frac{1}{n}}\right)} \end{aligned} \)
\( \Rightarrow \frac{1+\frac{3}{n}+\frac{1}{n^{2}}-\frac{1}{n}}{\sqrt{1+\frac{3}{n}+\frac{1}{n^{2}}}+\frac{1}{n}}=\frac{1+0+0-0}{\sqrt{1+0+0}+0}=\frac{1}{1}=1 \)