Aufgabe:
Unbestimmtes Integral bestimmen mit Substitutionsregel:
\( \int 3 x · \sqrt{1-2 x^{2}} d x \)
Leider verstehe ich die Anwendung der Formel noch nicht. Der Ansatz der Substitution ist mir klar, nur bei der Integralauflösung an sich scheitere ich immer.
Mein Ansatz:
\( u=\left(1-2 x^{2}\right) \\ u^{\prime}=\frac{1}{2}\left(1-2 x^{2}\right)^{-\frac{1}{2}} ·(-4x) \\ d x=\frac{d u}{\frac{1}{2}\left(1-2 x^{2}\right)^{-\frac{1}{2}} · (-4x)} \\ \begin{aligned} \int 3 x * u * \frac{d u}{\frac{1}{2}\left(1-2 x^{2}\right)^{-\frac{1}{2}} *-4 x} &=\frac{3}{-4} \int u^{*} \frac{d u}{\frac{1}{2}\left(1-2 x^{2}\right)^{-\frac{1}{2}}} \end{aligned} \)
Hier komme ich jetzt leider nicht mehr weiter.