a)
\( g:[-1,2] \rightarrow \mathbb{R}, \quad g(x)=\left|x \cdot e^{-\frac{x^{2}}{2}}\right| \)
Zeigen Sie die Stetigkeit auf \( [-1,2] \) und die Differenzierbarkeit auf \( [-1,2] \backslash\{0\} \) von \( g . \)
Die Stetigkeit dieser Funktion lässt sich ja damit begründet, dass sie eine Komposition stetiger Funktionen ist. Allerdings werden bei mir in der Lösung für Differenzierbarkeit zwei Fälle unterschieden. Meine Frage ist warum betrachtet man die zwei verschiedenen Fälle, also x aus [-1,0) und x aus (0, 2]. Könnte man nicht einfach sagen, dass die Funktion eine Komposition differenzierbarer Funktionen ist und damit differenzierbar ist, ohne diese beiden Fälle zu betrachten ?