Aloha :)
Um von der Mitte \(M\) zum Punkt \(C\) zu gelangen, musst du den Weg von \(A\) zu \(M\) nochmal an \(M\) dranhängen:
$$\vec c=\vec m+\overrightarrow{AM}=\vec m+(\vec m-\vec a)=2\vec m-\vec a=2\binom{2}{1,5}-\binom{-4}{0}=\binom{8}{3}$$
Um von der Mitte \(M\) zum Punkt \(D\) zu gelangen, musst du den Weg von \(B\) zu \(M\) nochmal an \(M\) dranhängen:
$$\vec d=\vec m+\overrightarrow{BM}=\vec m+(\vec m-\vec b)=2\vec m-\vec b=2\binom{2}{1,5}-\binom{4}{-2}=\binom{0}{5}$$