Hallo :-)
Es wird hier mit Spalten \(a_i\) und nicht mit Zeilen gearbeitet.
Ich mache das mal an der ersten Aufgabe vor:
$$ \begin{aligned}&|2\cdot a_1-a_3,a_3,3\cdot a_2|\\[15pt]&\stackrel{5.}{=}|2\cdot a_1,a_3,3\cdot a_2|+|-a_3,a_3,3\cdot a_2|\\[15pt]&\stackrel{4.}{=}|2\cdot a_1,a_3,3\cdot a_2|+(-1)\cdot \underbrace{|a_3,a_3,3\cdot a_2|}_{\stackrel{3.}{=}0}\\[15pt]&=|2\cdot a_1,a_3,3\cdot a_2|\\[15pt]&\stackrel{4.}{=}2\cdot |a_1,a_3,3\cdot a_2|\\[15pt]&\stackrel{4.}{=}3\cdot 2\cdot |a_1,a_3,a_2|\\[15pt]&=6\cdot |a_1,a_3,a_2|\\[15pt]&\stackrel{2.}{=}-6\cdot |a_1,a_2,a_3|=-12 \end{aligned} $$
Damit ist die Lösung bei dir falsch.
Bei der zweiten Aufgabe fehlt ein Komma in der zu berechnenden Matrix. Da sind nur drei Spalten, obwohl es eine \(4\times 4\)- Matrix sein soll.