Aufgabe: Sei \( X=\mathbb{R}^{n} \). Zeigen Sie, dass zwei Konstanten \( c, C>0 \) existieren, sodass für alle \( x \in \mathbb{R}^{n} \) folgende Ungleichung
\( c \cdot\|x\|_{1} \leq\|x\|_{2} \leq C \cdot\|x\|_{1} \)
gilt.
Problem:
Ich weiß nicht ganz, wie ich vorgehen soll. Ich habe zunächst versucht das ganze skizzenhaft zu zeigen. Die ||x||1 ist ja eher eine Raute und die ||x||2 ein Kreis. Und wenn ich beides im intervall von [-1,1] zeichne, ist ||x||1 kleiner als ||x||2 im offenen intervall (-1,1) und gleich im geschlossenen intervall [-1,1]. Allerdings sollen die konstanten größer 0 sein und -1 fällt dementsprechend weg. Ich habe auch leider gar keine Idee, wie man hier vorgehen könnte. Wäre sehr dankbar, wenn jemand eine Lösung zeigen könnte.