0 Daumen
543 Aufrufe

Aufgabe: (x+1)*e^x=0, wie kann ich das schriftlich ohne TR lösen? Danke

Avatar von
wie kann ich das schriftlich ohne TR lösen?

Man nennt diese geheimnisvolle gesuchte Methode "Nachdenken" ;-)

4 Antworten

+1 Daumen
 
Beste Antwort

\((x+1)*e^{x}=0\)

Satz vom Nullprodukt anwenden:

\((x+1)=0→x=-1\)

\(e^{x}=0\) Kann nicht 0 werden.

Unbenannt.PNG

Avatar von 40 k
+1 Daumen

Hallo,

wende den Satz vom Nullprodukt an.

x + 1 = 0 ⇒ x = -1

Eine Potenz mit e als Basis kann nicht null werden.

Gruß, Silvia

Avatar von 40 k
0 Daumen
kann ich das schriftlich ohne TR lösen

Das musst Du wissen. Aber es gibt sicher zahlreiche Leute, die es können.

Avatar von 45 k

Meine Frage war ja auch nach dem Wie!!! Wenn Sie schon zitieren, dann bitte auch so, dass es inhaltlich gleich bleibt.

Stören Sie am Samstag Abend bitte andere Leute, danke. :)

Alles klar. Meine Antwort bezog sich auf eine frühere Version der Anfrage.

Hallo WillMatheVerstehen,
der Beantworter ist für seine Freundlich-
keit bekannt.
Laß dir die Laune nicht verderben.
mfg Georg

Ich habe nichts an dieser Anfrage/Frage geändert, das Wort "wie" stand von Beginn an da.

Keine Sorge, von so einem lasse ich mir meine Laune nicht verderben, danke :).

0 Daumen

Es handelt sich hierbei um ein Produkt, bestehend aus 2 Faktoren. Die Faktoren sind (x+1) und e^x. Das Produkt ist null.

Du musst den Satz vom Nullprodukt anwenden.

Setze zuerst x+1=0 , die Lösung wäre x=-1

Danachs setzt du e^x=0 , es gibt keine Lösung , denn du musst, um diese Gleichung zu lösen , jetzt logarithmieren (also atürlichen Logarithmus anwenden) . Es ergibt sich folgendes:


ln(e^x) = ln(0)

x= ln(0) , der ln(0) ist nicht im Definitionsbereich, daher gibt es nur eine Lösung dieser Gleichung, und zwar x=-1


Ich hoffe, dass ich dir helfen konnte!

Avatar von

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community