Aloha :)
Wegen \((10^2=100)\) ist \((\log_{10}(100)=2)\), sodass die Funktion$$f(x)=\log_{10}(x+95)-2$$bei \(x=5\) ihre einzige Nullstelle hat.
Der Tangens des gesuchten Schnittwinkels \(\alpha\) ist daher gleich \(f'(5)\):$$\tan\alpha=f'(5)=\left.\frac{1}{\ln(10)\cdot(x+95)}\right|_{x=5}=\frac{1}{\ln(10)\cdot100}=0,004343\quad\implies$$$$\alpha\approx0,2488^\circ$$
Die Nullstelle ist korrekt. Du hast auch richtig abgeleitet. Aber bei der konkreten Berechnung der Ableitung sind dir ein paar führende Nullen verloren gegangen.