Aufgabe:
\( \int\limits_{1}^{\infty} \)cos(3x)/\( \sqrt{x} \)dx
Problem/Ansatz:
Wie schaffe ich es zu zeigen, dass das integral konvergiert? Ich habe versucht den integral Term abzuschätzen mit
\( \int\limits_{1}^{\infty} \)cos(3x)/\( \sqrt{x} \)dx≤\( \int\limits_{1}^{\infty} \)1/\( \sqrt{x} \)dx abzuschätzen aber da ist die Abschätzung schon zu groß gewählt. Weil 2\( \sqrt{x} \) schon divergiert. Ansonsten hab ich versucht mit Monotonie zu argumentieren und zu zeigen, dass die Ableitung der Funktion < 0 ist und somit monoton fallend. Aber da die Funktion nicht überall positiv ist kann ich ja damit nicht beweisen, dass es konvergiert