0 Daumen
177 Aufrufe

Wir fassen \( \mathbb{C} \) als \( \mathbb{R} \)-Vektorraum mit Basis \( \mathcal{V}:=(1, i) \) auf und definieren mithilfe der komplexen Multiplikation für \( z \in \mathbb{C} \) die \( \mathbb{R} \)-lineare Abbildung
\( f_{z}: \mathbb{C} \rightarrow \mathbb{C}, \quad w \mapsto z \cdot w . \)
a) Geben Sie, in Abhängigkeit von \( z \), die Matrixdarstellung \( F_{z} \) von \( f_{z} \) bezüglich der Basis \( \mathcal{V} \) an.

Avatar von

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community