Hallo, ich bin momentan an einer Aufgabe und komme nicht zu einem Lösungsweg... Ich wäre dankbar, wenn wir jemand mit der Aufgabe helfen könnte!
Wir nennen eine Funktion \( f: I \rightarrow \mathbb{R} \) auf dem Intervall \( I \) konvex, falls für alle \( x_{1}, x_{2} \in I \) und \( \lambda \in(0,1) \)
\( f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right) \)
gilt.
Sei \( f: I \rightarrow \mathbb{R} \) auf dem Interval \( I \) konvex, und seien \( a, b \in I \) mit \( a<b \).
Zeigen Sie, dass für alle \( x \in(a, b) \) gilt:
\( \frac{f(x)-f(a)}{x-a} \leq \frac{f(b)-f(a)}{b-a} \leq \frac{f(b)-f(x)}{b-x} . \)
LG