Aufgabe:Zeigen, dass auf I f ′′≥0 ist.
Problem/Ansatz:
Text erkannt:
Aufgabe H6.3 (konvexe Funktionen)
( \( 2+3+3 \) Punkte)
Wir nennen eine Funktion \( f: I \rightarrow \mathbb{R} \) auf dem Interval \( I \) konvex, falls für alle \( x_{1}, x_{2} \in I \) und \( \lambda \in(0,1) \)
\( f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right) \)
gilt.
Sei \( f: I \rightarrow \mathbb{R} \) auf dem Interval \( I \) konvex, und seien \( a, b \in I \) mit \( a<b \).
(a) Zeigen Sie, dass für alle \( x \in[a, b] \) gilt:
\( f(x) \leq \frac{b-x}{b-a} f(a)+\frac{x-a}{b-a} f(b) \)
(b) Zeigen Sie, dass für alle \( x \in(a, b) \) gilt:
\( \frac{f(x)-f(a)}{x-a} \leq \frac{f(b)-f(a)}{b-a} \leq \frac{f(b)-f(x)}{b-x} \)
(c) Sei \( f \) auf dem Interval \( I \) zweimal differenzierbar. Zeigen Sie mit Hilfe von (b), dass auf \( I \)
\( f^{\prime \prime} \geq 0 \)
ist.
Bemerkung: Man beachtet, dass die entgegengesetzte Behauptung auch erfüllt ist. Tatsächlich ist \( f \) auf \( I \) konvex genau dann, wenn \( f^{\prime \prime} \geq 0 \) auf \( I \) gilt.