Aloha :)
Willkommen in der Mathelounge... \o/
Die Abbildung \(\phi\) ist bezüglich der Standardbasis \(S\) des \(\mathbb R^3\) definiert.
Du sollst nun eine Abbildungsmatrix \(A\) für diese Abbildungsvorschrift bestimmen, die für Vektoren bezüglich einer anderen Basis \(B\) gültig ist, wobei$$B=\left(\begin{pmatrix}1\\0\\0\end{pmatrix}_{\!\!B},\begin{pmatrix}0\\1\\0\end{pmatrix}_{\!\!B},\begin{pmatrix}0\\0\\1\end{pmatrix}_{\!\!B}\right)=\left(\begin{pmatrix}1\\0\\0\end{pmatrix}_{\!\!S},\begin{pmatrix}0\\1\\0\end{pmatrix}_{\!\!S},\begin{pmatrix}0\\1\\1\end{pmatrix}_{\!\!S}\right)$$
Dazu bestimmst du die Bilder der Basisvektoren von \(B\) und rechnest diese Bildvektoren wieder in die Basis \(B\) um:$$\phi\begin{pmatrix}1\\0\\0\end{pmatrix}_{\!\!B}=\phi\begin{pmatrix}1\\0\\0\end{pmatrix}_{\!\!S}=\begin{pmatrix}1\\1\\1\end{pmatrix}_{\!\!S}=\begin{pmatrix}1\\0\\0\end{pmatrix}_{\!\!S}+\begin{pmatrix}0\\1\\1\end{pmatrix}_{\!\!S}=1\begin{pmatrix}1\\0\\0\end{pmatrix}_{\!\!B}+1\begin{pmatrix}0\\0\\1\end{pmatrix}_{\!\!B}=\begin{pmatrix}1\\0\\1\end{pmatrix}_{\!\!B}$$$$\phi\begin{pmatrix}0\\1\\0\end{pmatrix}_{\!\!B}=\phi\begin{pmatrix}0\\1\\0\end{pmatrix}_{\!\!S}=\begin{pmatrix}1\\-1\\0\end{pmatrix}_{\!\!S}=\begin{pmatrix}1\\0\\0\end{pmatrix}_{\!\!S}+\begin{pmatrix}0\\-1\\0\end{pmatrix}_{\!\!S}=1\begin{pmatrix}1\\0\\0\end{pmatrix}_{\!\!B}-1\begin{pmatrix}0\\1\\0\end{pmatrix}_{\!\!B}=\begin{pmatrix}1\\-1\\0\end{pmatrix}_{\!\!B}$$$$\phi\begin{pmatrix}0\\0\\1\end{pmatrix}_{\!\!B}=\phi\begin{pmatrix}0\\1\\1\end{pmatrix}_{\!\!S}=\begin{pmatrix}0\\0\\0\end{pmatrix}_{\!\!S}=0\begin{pmatrix}1\\0\\0\end{pmatrix}_{\!\!B}+0\begin{pmatrix}0\\1\\0\end{pmatrix}_{\!\!B}+0\begin{pmatrix}0\\0\\1\end{pmatrix}_{\!\!B}=\begin{pmatrix}0\\0\\0\end{pmatrix}_{\!\!B}$$
Die gesuchte Abbildungsmatrix lautet daher:$$A=\left(\begin{array}{rrr}1 & 1 & 0\\0 & -1 & 0\\1 & 0 & 0\end{array}\right)$$
Sie enthält offensichtlich zwei linear unabhängige Spaltenvektoren, sodass die Abbildung den Rang \(2\) hat.