a)
\( \lim \limits_{x \rightarrow 0} \frac{2-e^{x^{2}}-e^{-x^{2}}}{x^{4}} \) =
\( \lim \limits_{x \rightarrow 0} \frac{2-e^{x}-e^{-x}}{x^{2}} \) =
\( \lim \limits_{x \rightarrow 0} \frac{2e^{x}-e^{x}*e^{x}-e^{-x}*e^{x}}{x^{2}*e^{x}} \) =
\( \lim \limits_{x \rightarrow 0} \frac{2e^{x}-e^{x}*e^{x}-1}{x^{2}*e^{x}} \) =
\( \lim \limits_{x \rightarrow 0} \frac{2e^{x}-e^{x}*e^{x}-1}{x^{2}*e^{x}} \) =
\( \lim \limits_{x \rightarrow 0} \frac{-(e^{x}-1)^2}{x^{2}*e^{x}} \) =
\( \lim \limits_{x \rightarrow 0} -(\frac{e^{x}-1}{x})^2 * \frac{1}{e^{x}} \) =
\( \lim \limits_{x \rightarrow 0} -(1)^2 * \frac{1}{e^{x}} \) = -1
b)
\( \frac{\pi}{2 x+1}(\frac{3 x^{3}+5 x}{x^{2}+2}-5x) = \frac{-π x - 4π}{9 (x^2 + 2)} + \frac{11π}{9 (2x + 1)} - π \)
\( \lim \limits_{x \rightarrow \infty} \cos \left(\frac{\pi}{2 x+1}\left(\frac{3 x^{3}+5 x}{x^{2}+2}-5 x\right)\right) = cos(-π) = -1 \)