Aloha :)
Die Integrationsreihenfolge spielt dann eine Rolle, wenn die Grenzen einer Integrations-variablen von einer anderen Integrationsvariablen abhängen. Das ist hier nicht der Fall:$$r\in[1;2]\quad;\quad\varphi\in\left[0;\frac\pi4\right]\quad;\quad z\in[0;1]$$
Diese Grenzen sind in Zylinerkoordinaten gegeben. Die zu integrierende Funktion liegt jedoch in kartesischen Koordinaten \((x;y;z)\) vor und muss erst mittels$$\begin{pmatrix}x\\y\\z\end{pmatrix}=\begin{pmatrix}r\cos\varphi\\r\sin\varphi\\z\end{pmatrix}\quad;\quad dV=dx\;dy\;dz=r\,dr\,d\varphi\,d\vartheta$$
in Zylinderkoordinaten umgerechnet werden$$f(x;y;z)=z\sqrt{x^2+y^2}=z\sqrt{r^2\cos^2\varphi+r^2\sin^2\varphi}=z\sqrt{r^2}=zr=f(r;\varphi;z)$$
Das gesuchte Dreifachintegral lautet dann:$$I=\iiint\limits_Gf(x;y;z)\,dV=\int\limits_{r=1}^2\int\limits_{\varphi=0}^{\pi/4}\,\int\limits_{z=0}^1 \underbrace{zr}_{f(r;\varphi;z)}\cdot\underbrace{r\,dr\,d\varphi\,dz}_{=dV}=\int\limits_{r=1}^2r^2\,dr\cdot\int\limits_{\varphi=0}^{\pi/4}d\varphi\int\limits_{z=0}^1z\,dz$$
Jetzt erkennst du auch sehr schön, dass das Dreifachintegal in ein Produkt aus drei einfachen Integralen zerfällt und dass die Integrations-Reihenfolge irrelevant ist:
$$I=\left[\frac{r^3}{3}\right]_{r=1}^2\cdot\left[\varphi\right]_0^{\pi/4}\cdot\left[\frac{z^2}{2}\right]_{z=0}^1=\left(\frac83-\frac13\right)\cdot\left(\frac\pi4-0\right)\cdot\left(\frac12-0\right)=\frac{7}{24}\,\pi$$