Aufgabe:
Zeigen Sie, dass es für \( F: \mathbb{R}^{3} \rightarrow \mathbb{R},(x, y, z) \mapsto y^{2}+x z+z^{2}-\exp (x z)-1 \) offene Umgebungen \( U_{1} \subset \mathbb{R}^{2} \) von \( (0,-1), U_{2} \subset \mathbb{R} \) von 1 und eine stetig differenzierbare Funktion \( f: U_{1} \rightarrow U_{2} \) gibt, sodass für alle \( (x, y, z) \in U_{1} \times U_{2} \) die Gleichung \( F(x, y, z)=0 \) genau dann gilt, wenn \( z=f(x, y) \).
Überlegen Sie sich, dass \( f \) bereits zweimal stetig differenzierbar ist und bestimmen Sie das Taylorpolynom \( T^{(2)} f(x, y ;(0,-1)) \) zweiter Ordnung von \( f \) mit Entwicklungspunkt \( a=(0,-1) \).
Problem/Ansatz:
Der ersten Teil habe ich bereits mit dem Satz über implizite Funktionen gezeigt.
Ich komme eher bei dem zweiten Teil der Aufgabe nicht weiter, also das Taylorpolynom 2. Ord. zu finden. Ich habe bereits folgendes bestimmt (Ableitung der expliziten Funktion f):
\( \rightarrow \) Laut Angabe ist f zweimal stetig diffbar!
Zunächst ist: \( f(0,-1)=1 \)
Jacobi-Matrix von \( f \) :
\( \begin{array}{l} f^{\prime}(x, y)=\left(-\frac{F_{x}\left(x, y, z\right)}{F_{z}(x, y, z)}-\frac{F_{y}}{F_{z}}(x, y, z)\right)=-\frac{1}{x+2 z-x \exp (x z)} \cdot(z-z \exp (x z) \quad 2 y) \\ \Rightarrow f^{\prime}(0,-1)=\left(\begin{array}{ll} 0 & 1 \end{array}\right) \end{array} \)
Mein Problem besteht darin, dass ich die zweite Ableitung von f nich bestimmen kann, also ich weiß nicht, wie die entsprechende Formel dafür aussehen. Kann mir da Jemand weiterhelfen?