Also in den Bemerkungen steht, dass wir das mit einem Teil des Skripts lösen sollen, habe ich mal unten angehangen, sind uns trotzdem unsicher
Text erkannt:
Bemerkung 17.9. Es sei
\( f: I \longrightarrow \mathbb{R} \)
eine \( n \)-fach differenzierbare Funktion, für die das Taylor-Polynom im Entwicklungзpunkl \( u \in I \) biз suıı Gial \( n \) bekanıı зci und füı die \( f(u) \neq 0 \) sei. Dann ist die Funktion 1/f auf einem offenen Intervall um \( a \) definiert und nach Lemma \( 14.7 \) (4) differenzierbar in \( a \). Aufgrund von Satz \( 9.13 \) gilt (für \( |x|<1 \) )
\( \frac{1}{1-x}=\sum \limits_{i=0}^{\infty} x^{i} \)
bzw.
\( \frac{1}{x}=\sum \limits_{i=0}^{\infty}(1-x)^{i}=\sum \limits_{i=0}^{\infty}(-1)^{i}(x-1)^{i} \)
d.h. für die Funktion \( \frac{1}{x} \) ist die Taylor-Reihe im Entwicklungspunkt 1 bekannt. Wir ersetzen \( f \) durch \( h=\frac{1}{f(a)} f \), so dass \( h(a)=1 \) gilt. Dann kann man die Funktion \( 1 / h \) als die Verknüpfung von \( h \) mit der Funktion \( \frac{1}{x} \) schreiben. Daher
253
erhält man wegen Bemerkung \( 17.8 \) das Taylor-Polynom bis zum Grad \( n \) von \( 1 / h \), indem man in \( \sum \limits_{i=0}^{n}(-1)^{i}(x-1)^{i} \) das Taylor-Polynom (bis zum Grad \( n \) ) von \( h \) im Entwicklungspunkt \( a \) einsetzt und beim Grad \( n \) abschneidet. Das Taylor=Polynom von \( 1 / f \) erhält man, indem man durch \( f(a) \) teilt.