Hallo,
die Jacobi-Matrix einer Funktion \(f: \mathbb{R}^n \to \mathbb{R}\) ist eine \(1 \times n\)-Matrix mit den partiellen Ableitungen von f, also analog zu einem Zeilenvektor. In vielen Anwendungsfällen hat diese Ableitung eine technische Bedeutung. Wenn zum Beispiel f das Potential eines elektrischen Feldes ist, dann ist der Spalten-Vektor aus den partiellen Ableitungen gerade die Kraft in diesen Feld, diesen Spalten-Vektor bezeichnet man als Gradient. Also ist der Gradient der transponierte Vektor aus der Jacobi-Matrix.
Oft macht man sich aber nicht die Mühe, das immer genau zu trennen.
Gruß Mathhilf