Hallo,
eine Ebenengleichung wird eindeutig bestimmt durch
- einen Punkt A und zwei linear unabhängige Vektoren \( \overrightarrow{\mathrm{u}} \) und \( \overrightarrow{\mathrm{v}} \) :
E: \( \vec{x}=\vec{a}+r \cdot \vec{u}+s \cdot \vec{v} ; \quad r, s \in \mathbb{R} \)
- drei Punkte A, B und C:
\( \mathrm{E}: \;\overrightarrow{\mathrm{x}}=\overrightarrow{\mathrm{a}}+\mathrm{r} \cdot \overrightarrow{\mathrm{AB}}+\mathrm{s} \cdot \overrightarrow{\mathrm{AC}} ; \quad r, s \in \mathbb{R} \)
(Drei-Punkte-Form)
- eine Gerade \( g: \overrightarrow{\mathrm{x}}=\overrightarrow{\mathrm{a}}+\mathrm{r} \cdot \overrightarrow{\mathrm{u}} \) und einen Punkt \( B \notin g: \)
\( E:\; \vec{x}=\vec{a}+r \cdot \vec{u}+s \cdot \overrightarrow{A B} ; \quad r, s \in R \)
- zwei sich schneidende Geraden \( \mathrm{g}: \overrightarrow{\mathrm{x}}=\overrightarrow{\mathrm{a}}+\mathrm{r} \cdot \overrightarrow{\mathrm{u}} \) und h: \( \overrightarrow{\mathrm{x}}=\overrightarrow{\mathrm{b}}+\mathrm{s} \cdot \overrightarrow{\mathrm{v}} \) :
\( E:\; \vec{x}=\vec{a}+r \cdot \vec{u}+s \cdot \vec{v} ; \quad r, s \in R \)
- zwei echt parallele Geraden
- g: \( \overrightarrow{\mathrm{x}}=\overrightarrow{\mathrm{a}}+\mathrm{r} \cdot \overrightarrow{\mathrm{u}} \) und \( \mathrm{h}: \overrightarrow{\mathrm{x}}=\overrightarrow{\mathrm{b}}+\mathrm{s} \cdot \overrightarrow{\mathrm{v}} \) :
\( E: \vec{x}=\vec{a}+r \cdot \vec{u}+s \cdot \overrightarrow{A B} ;\quad r, s \in \mathbb{R} \)
Was vorgegeben ist, bleibt dir überlassen (Punkte, Geraden, Gerade/Punkt, ...),
Du hast die Wahl!
Gruß, Silvia