Übersetze das Problem erstmal in eines, welches Matrizen verwendet: Sei "weiss" kodiert durch 0 und "schwarz" kodiert durch 1. Wir arbeiten also über dem Körper \( \mathbb{F}_{2} \). Möchtest du nun z.B. den Knopf \( (1,2) \) drücken (wir betrachten den Fall \( n=3 \) ), so entrspricht dies der Addition der Anfangsmatrix zu
\( \left[\begin{array}{lll} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{array}\right] \)
und im Allgemeinen gilt, möchtest du den Knopf an der Position ( \( l, s) \) drücken, dass wir die jeweilige Matrix mit \( \boldsymbol{A}_{(l, s)} \) summieren, wobei
\( \left(\boldsymbol{A}_{(l, s)}\right)_{i, j}=\left\{\begin{array}{ll} 1, & i=l \text { oder } j=s \\ 0, & \text { sonst } \end{array} .\right. \)
Des Weiteren gilt \( \boldsymbol{A}_{(l, s)}+\boldsymbol{A}_{(l, s)}=0 \), was zusammen mit der Kommutativität der Matrixaddition dazu führt, dass wir jede der Matrizen \( \boldsymbol{A}_{(1, s)} \) für \( 1 \leqslant l, s \leqslant n \) nur maximal einmal zu unserer Anfangsmatrix hinzuaddieren können/müssen, da ein zweites Mal nichts an der Anfangsmatrix verändern würde und wir es daher garnicht erst machen müssten. Wir addieren also maximal \( \mathrm{n}^{2} \) Matrizen, was im ursprünglichen Kontext bedeutet, dass wir maximal \( n^{2} \) Mal einen Knopf drücken (die Prämisse ist hierbei jedoch, dass das Spiel tatsächlich lösbar ist). Für die Lösbarkeit kann man das Problem als ein LGS formulieren, das werde ich nach Bedarf gerne weiter ausführen.