Zeigen Sie mit vollständiger Induktion für \( n \in \mathbb{N}_{0} \),
\( \sum \limits_{k=0}^{2 n} i^{k} k=\left\{\begin{array}{ll} n(1-i) & \text { wenn } n \text { gerade } \\ -(n+1)+n i & \text { sonst } \end{array}\right. \)
Wie genau mache ich das jetzt? Normalerweise Fängt man ja so an, dass man für n = 1 einsetzt und dafür zeigt, und dann dass man das für n + 1 zeigt oder nicht? Muss ich das hier dann 2 mal machen für gerades und ungerades n, also sogesagt zwei mal Vollständige Induktion machen, oder geht das auch anders?