0 Daumen
755 Aufrufe

Aufgabe:

Bestimmen Sie mit Hilfe des Euler-Verfahrens eine Näherungslösung des Anfangswertproblems

y′=0.6y^2+7e^−0.7x,   y(0)=12.

Führen Sie zwei Schritte für h=0.1 durch.


Problem/Ansatz:

ich komme irgndwie nicht auf die richtige lösung ein rechenweg beispiel währe spuer :)

Avatar von

2 Antworten

+1 Daumen
 
Beste Antwort

Hallo,

ich komme irgndwie nicht auf die richtige lösung ein rechenweg beispiel währe spuer :)

dann wäre es hilfreich, wenn Du Deine 'falsche' Lösung nebst Rechnung hier posten würdest.

Das Eulerverfahren beruht darauf, dass angenommen wird, dass die gesuchte Funktion im 'kleinen' (also im Bereich von \(h\)) einigermaßen linear verläuft. Ist vom einem Startpunkt \(x\) und \(y\) bekannt (hier \((x,\,y)=(0,\,12)\)), so lässt sich das \(y'\) an dieser Stelle an Hand der gegebenen Formel berechnen$$y'(x,y) = \frac{6}{10}y^{2}+7e^{-\frac{7x}{10}} \\ y'(x_0=0,\,y_0=12) = 93,4$$und mit Punkt und Steigung lässt sich die zugehörige Gerade bestimmen$$g(x) = 12 + 93,4(x-0) = y_0 + y'(x_0) (x-x_0) $$Das ist die grüne Gerade hier im Bild


Nun bewegt man sich ein Stück \(h=0,1\) von \(x_0=0\) aus nach rechts und kommt zu $$x_1 = x_0 + h \\ y_1 = g(x_1)=y_0 + y'(x_0) (x_1-x_0) = y_0 +y'(x_0)h \\ \quad = 12 + 93,4 \cdot 0,1 = 21,34$$Nun wird das \(y'\) an der Stelle \(y'(x_1,\,y_1)\) berechnet und im nächsten Schritt wiederholt man das ganze und kommt zu \((x_2,\,y_2)\) usw.

Es ist von Vorteil, sich dafür eine Tabelle zu erstellen$$\begin{array}{r|rrr}& x& y& y’\\\hline 0& 0& 12& 93,4\\ 1& 0,1& 21,34& 279,76\\ 2& {\color{red}0,2}& \color{red}49,32& 1465,35\\ 3& 0,3& 195,85& 23020,35\\ 4& 0,4& 2497,89& 3743668,31\end{array}$$Mit einem Tabellenverarbeitungsprogramm lässt sich das fix für einige Schritte durchrechnen. Das \(h\) ist hier aber mit \(h=0,1\) viel zu groß gewählt, um eine Näherung der Lösung zu erhalten!

Und oben im Bild siehst Du die berechneten Punkte in ein Koordinatensystem eingetragen. Beachte bitte, dass das Kordinatensystem in Y-Richtung stark gestaucht ist. Nach zwei Schritten ist das rot markierte Ergebnis erreicht.

Falls Du Fragen hast, so melde Dich bitte.

Gruß Werner

Avatar von 48 k
0 Daumen

Hallo
da das Eulerverfahren ja recht einfach ist, musst du schon sagen was du gemacht hast,
 1. Schritt y'(12) bestimmen, mit 0,1 multiplizieren zu 12 addieren ist y(12,1)
y'(12,1)ausrechnen, mit 0,1mult. zu y(12,1) addieren. Fertig.
lul

Avatar von 108 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community