Aloha :)
Du kannst das das Vektorfeld \(\vec v\) als Gradient einer Funktion \(\phi\) schreiben:$$\vec v=\operatorname{grad}\phi(x;y;z)=\begin{pmatrix}\frac{\partial\phi}{\partial x}\\[1ex]\frac{\partial\phi}{\partial y}\\[1ex]\frac{\partial\phi}{\partial z}\end{pmatrix}\quad;\quad\phi(x;y;z)\coloneqq2x^2y-2xyz+\frac{xz^2}{16}-y^2$$
Das Kurvenintegral hängt daher nicht vom gewählten Weg, sondern nur vom Start- und Endpunkt ab:$$\gamma(0)=(1;0;0)\quad;\quad\gamma(\pi)=(-1;0;4\pi)$$
Damit lautet die Rechnung:$$E=\int\limits_{(1;0;0)}^{(-1;0;4\pi)}\vec v\,d\vec r=\int\limits_{(1;0;0)}^{(-1;0;4\pi)}\begin{pmatrix}v_1\\v_2\\v_3\end{pmatrix}\cdot\begin{pmatrix}dx\\dy\\dz\end{pmatrix}=\int\limits_{(1;0;0)}^{(-1;0;4\pi)}\left(v_1\,dx+v_2\,dy+v_3\,dz\right)$$$$\phantom{E}=\int\limits_{(1;0;0)}^{(-1;0;4\pi)}\left(\frac{\partial\phi}{\partial x}\,dx+\frac{\partial\phi}{\partial y}\,dy+\frac{\partial\phi}{\partial z}\,dz\right)=\int\limits_{(1;0;0)}^{(-1;0;4\pi)}d\phi$$$$\phantom E=\phi(-1;0;4\pi)-\phi(1;0;0)=-\pi^2-0=-\pi^2$$