Aloha :)
Wenn ein Vektorfeld \(\vec v\) ein Potential \(\phi\) besitzt, gilt:$$\vec v(x;y;z)=\operatorname{grad}\phi(x;y;z)=\begin{pmatrix}\frac{\partial\phi}{\partial x}\\[1ex]\frac{\partial\phi}{\partial y}\\[1ex]\frac{\partial\phi}{\partial z}\end{pmatrix}$$
In diesem Fall kannst du das Integral über \(\vec v\) entlang eines Weges \(\vec r\) von einem Startpunkt \((x_1;y_1;z_1)\) zu einem Endpunkt \((x_2;y_2;z_2)\) wie folgt berechnen:
$$E=\int\limits_{(x_1;y_1;z_1)}^{(x_2;y_2;z_2)}\vec v\,d\vec r=\int\limits_{(x_1;y_1;z_1)}^{(x_2;y_2;z_2)}\begin{pmatrix}v_x\\v_y\\v_z\end{pmatrix}\begin{pmatrix}dx\\dy\\dz\end{pmatrix}=\int\limits_{(x_1;y_1;z_1)}^{(x_2;y_2;z_2)}\left(v_x\,dx+v_y\,dy+v_z\,dz\right)$$Jetzt nutzen wir aus, dass \(\vec v=\operatorname{grad}\phi\) ist:$$\phantom E=\int\limits_{(x_1;y_1;z_1)}^{(x_2;y_2;z_2)}\left(\frac{\partial\phi}{\partial x}\,dx+\frac{\partial\phi}{\partial y}\,dy+\frac{\partial\phi}{\partial z}\,dz\right)=\int\limits_{(x_1;y_1;z_1)}^{(x_2;y_2;z_2)}d\phi=\phi(x_2;y_2;z_2)-\phi(x_1;y_1;z_1)$$
In der Klammer steht das totale Differential \(d\phi\) von \(\phi\), mit \(\phi\) als Stammfunktion.
Wenn also das Vektorfeld \(\vec v\) ein Potential \(\phi\) hat, kannst du das Wegintegral über \(\vec v\) entlang eines beliebigen Weges immer auf ein Integral über das totale Differential \(d\phi\) von \(\phi\) zurückführen. Dadurch hängt das Wegintegral nur von Start- und Endpunkt ab, aber nicht von dem gewählten Weg zwischen Start- und Endpunkt. Das funktioniert natürlich auch mit mehr als 3 Dimensionen und in nicht-kartesischen Koordinaten.
Allgemein gilt für eine stetig differenzierbare Funktion \(\vec v\colon U\to\mathbb R^n\), die über einer offenen und einfach zusammenhängenden Menge \(U\subseteq\mathbb R^n\) definiert ist:$$\text{\(\vec v\) ist Gradientenfeld}\quad\Longleftrightarrow\quad \underbrace{\frac{\partial v_i}{\partial x_k}=\frac{\partial v_k}{\partial x_i}\quad\text{für }i,k\in\{1;2;\ldots;n\}}_{\text{Integrabilitätsbedingung}}$$
"Einfach zusammenhängend" bedeutet, dass du jeden geschlossenen Weg, der innerhalb \(U\) liegt, auf die Größe eines Punkts zusammenziehen kannst, ohne dabei die Menge \(U\) zu verlassen. Eine Kreisfläche mit einem Loch in der Mitte ist zum Beispiel nicht einfach zusammenhängen, denn ein geschlossener Weg um das Loch herum kann nicht zu einem Punkt zusammengezogen werden. Sternfömige Gebiete sind einfach zusammenhängend.
In 3 Dimensionen ist die Rotation eines Vektorfeldes definiert. Dann ist die Integrabilitätsbedingung \((\ast)\) genau dann erfüllt, wenn die Rotation des Vektorfeldes verschwindet:$$\operatorname{rot}\vec v=\begin{pmatrix}\frac{\partial}{\partial x}\\[1ex]\frac{\partial}{\partial y}\\[1ex]\frac{\partial}{\partial z}\end{pmatrix}\times\begin{pmatrix}v_x\\v_y\\v_z\end{pmatrix}=\begin{pmatrix}\frac{\partial v_y}{\partial z}-\frac{\partial v_z}{\partial y}\\[1ex]\frac{\partial v_z}{\partial x}-\frac{\partial v_x}{\partial z}\\[1ex]\frac{\partial v_x}{\partial y}-\frac{\partial v_y}{\partial x}\end{pmatrix}\stackrel{(\ast)}{=}\begin{pmatrix}0\\0\\0\end{pmatrix}$$