Lineares Gleichungssystem in Matrixschreibweise:$$\left(\begin{array}{cc} \frac{1}{a} & \frac{1}{b} \\ 1 & 1\end{array}\right)\left(\begin{array}{cc} x \\ y\end{array}\right)=\left(\begin{array}{cc} a \\ b^2\end{array}\right)$$
Lösung durch Cramersche Regel:Ersetze Dabei die i-te Spalte der Koeffizientenmatix mit der rechten Seite des Gleichungssystems und bestimme die Determinante.
$$x=\frac{\left| \left(\begin{array}{cc} a & \frac{1}{b} \\ b^2 & 1\end{array}\right) \right|}{\left|\left(\begin{array}{cc} \frac{1}{a} & \frac{1}{b} \\ 1 & 1\end{array}\right)\right|}=\frac{(a-b)}{\frac{1}{a}-\frac{1}{b}}=\frac{(a-b)}{\frac{-(a-b)}{ab}}=-ab$$
$$y=\frac{\left| \left(\begin{array}{cc} \frac{1}{a} & a \\ 1 & b^2\end{array}\right) \right|}{\left|\left(\begin{array}{cc} \frac{1}{a} & \frac{1}{b} \\ 1 & 1\end{array}\right)\right|}=\frac{\frac{b^2}{a}-a}{\frac{1}{a}-\frac{1}{b}}=\frac{\frac{b^2-a^2}{a}}{\frac{b-a}{ab}}=b(a+b)$$
Überprüfung:
https://www.wolframalpha.com/input/?i=Solve+x%2Fa%2By%2Fb%3Da%2Cx%2By%3Db%5E2