Hallo Leute, ich habe versucht folgendes integral zu lösen (die Lösung steht auch bereits da). Das Problem ist, dass ich bei meiner lösung etwas anderes rausbekommen habe. Der Weg stimmt bei mir an sich auch, aber in der letzten Zeile taucht bei der Lösung aus dem Internet irgendwie noch ein r auf? Also da steht ja r² × r, was anschließend zu r³ wird. Ich verstehe aber nicht ganz, woher das zweite r auftaucht. Könnte mir jemand helfen bitte.
\( I=\int \limits_{A}\left(x^{2}+y^{2}\right) d y d x, \quad A: \quad 1 \leqslant r \leqslant 2, \quad 0 \leqslant \varphi \leqslant \frac{\pi}{2} \)
\( \int \limits_{A} f(x, y) d A=\int \limits_{\varphi_{1}}^{\varphi_{2}} \int \limits_{r_{1}(\varphi)}^{r_{2}(\varphi)} f(r \cos \varphi, r \sin \varphi) r d r d \varphi \)
\( x^{2}+y^{2}=r^{2} \cos ^{2} \varphi+r^{2} \sin ^{2} \varphi=r^{2} \)
\( I=\int \limits_{A}\left(x^{2}+y^{2}\right) d x d y=\int \limits_{1}^{2} r^{2} r d r \int \limits_{0}^{\frac{\pi}{2}} d \varphi=\frac{\pi}{2} \int \limits_{1}^{2} r^{3} d r=\frac{15}{8} \pi \)