\((G_2)\) erinnert ein wenig an die Methode "Beweisen durch Behaupten". Ich würde es so notieren:
$$ \textrm{Seien }a,\:b,\: c \in\mathbb{R}\textrm{ beliebig. Dann gilt wegen}\\ \begin{aligned} \left(a\circ b\right)\circ c &= \sqrt[3\:]{\left(\sqrt[3\:]{a^3+b^3+8}\right)^3+c^3+8} \\ &= \sqrt[3\:]{a^3+b^3+8+c^3+8} \\ &= \sqrt[3\:]{a^3+\left(b^3+c^3+8\right)+8} \\ &= \sqrt[3\:]{a^3+\left(\sqrt[3\:]{b^3+c^3+8}\right)^3+8} \\ &= a\circ\left(b\circ c\right)\end{aligned} $$das Assoziativgesetz.