\(\int \limits_{-3}^{-5} \frac{1}{(2-x)^{2}} *d x \)
\( \int \frac{1}{(2-x)^{2}} *d x\) 
Substitution:
\(2-x=u \)     \( x=2-u\)      \( dx=-1*du\)
\( \int \frac{1}{u^{2}} *(-1)*du\)        \( -\int u^{-2} *du\) = \(-\frac{u^{-2+1}}{-1} =u^{-1} =\frac{1}{u}  \)
\(\int \limits_{-3}^{-5} \frac{1}{(2-x)^{2}} *d x=[\frac{1}{2-x}] \)
Nun die Grenzen einsetzen: \( [\frac{1}{2-(-3)}]- [\frac{1}{2-(-5)}]\)=...