Aloha :)
Bei der Berechnung der Fläche zwischen der Funktion$$f(x)=x^3+x^2-6x=x(x^2+x-6)=x(x+3)(x-2)$$und der \(x\)-Achse müssen wir von einer Nullstelle zur nächsten integrieren und von jedem Integral den Betrag wählen, weil Integrale oberhalb der x-Achse postitiv sind und Integrale unterhalb der x-Achse negativ sind.
Die Nullstellen \((-3)\), \(0\) und \(2\) entnehmen wir der Linearfaktorzerlegung von oben:$$F=\left|\int\limits_{-3}^0f(x)\,dx\right|+\left|\int\limits_{0}^2f(x)\,dx\right|=\left|\left[\frac{x^4}{4}+\frac{x^3}{3}-3x^2\right]_{-3}^0\right|+\left|\left[\frac{x^4}{4}+\frac{x^3}{3}-3x^2\right]_0^2\right|$$$$\phantom F=\left|0-\frac{63}{4}\right|+\left|-\frac{16}{3}-0\right|=\frac{63}{4}+\frac{16}{3}=\frac{63\cdot3+16\cdot4}{12}=\frac{253}{12}$$