Aloha :)
$$I=\int\limits_{x=\frac54\pi}^{\frac94\pi}\;\;\int\limits_{y=\sin(x)}^{\cos(x)}|y|\,dx\,dy=\int\limits_{x=\frac54\pi}^{\frac94\pi}dx\int\limits_{y=\sin(x)}^{\cos(x)}|y|\,dy=\int\limits_{x=\frac54\pi}^{\frac94\pi}dx\left[\frac{y|y|}{2}\right]_{y=\sin(x)}^{\cos(x)}$$$$\phantom I=\int\limits_{x=\frac54\pi}^{\frac94\pi}\left(\frac{\cos(x)|\cos(x)|}{2}-\frac{\sin(x)|\sin(x)|}{2}\right)\,dx$$
Wir überlegen uns die Vorzeichen der Winkelfunktionen$$\frac54\pi\le x\le\frac32\pi\implies\sin(x)\le0\;\land\;\cos(x)\le0$$$$\frac32\pi\le2\pi\implies\sin(x)\le0\;\land\;\cos(x)\ge0$$$$2\pi\le x\le\frac94\pi\implies\sin(x)\ge0\;\land\;\cos(x)\ge0$$um den Absolutbetrag aufzulösen:$$I=\int\limits_{x=\frac54\pi}^{\frac32\,\pi}\left(\frac{-\cos^2(x)}{2}-\frac{-\sin^2(x)}{2}\right)\,dx+\int\limits_{x=\frac32\pi}^{2\pi}\left(\frac{\cos^2(x)}{2}-\frac{-\sin^2(x)}{2}\right)\,dx$$$$\phantom I+\int\limits_{x=2\pi}^{\frac94\,\pi}\left(\frac{\cos^2(x)}{2}-\frac{\sin^2(x)}{2}\right)\,dx$$$$\phantom I=-\frac12\int\limits_{x=\frac54\pi}^{\frac32\,\pi}\cos(2x)\,dx+\frac12\int\limits_{x=\frac32\pi}^{2\pi}dx+\frac12\int\limits_{x=2\pi}^{\frac94\,\pi}\cos(2x)\,dx$$$$\phantom I=-\frac14\left[\sin(2x)\right]_{\frac54\pi}^{\frac32\,\pi}+\frac12\left[x\right]_{\frac32\pi}^{2\pi}+\frac14\left[\sin(2x)\right]_{2\pi}^{\frac94\,\pi}$$$$\phantom I=-\frac14\left(0-1\right)+\frac12\left(2\pi-\frac32\pi\right)+\frac14\left(1-0\right)=\frac12+\frac\pi4=\frac{\pi+2}{4}$$