Aufgabe:
Es seien \( E=\left(C([0,1]),\left\|_{\infty}\right\|_{\infty}\right) \) und \( A: E \rightarrow E \) definiert durch \( A f(x):=\int \limits_{0}^{x} f(t) d t \).
(a) Berechnen Sie die Operatornorm \( \|A\| \).
(b) Bestimmen Sie für \( \lambda \neq 0 \) die Resolvente \( R_{A}(\lambda) \).
(c) Zeigen Sie, dass \( \sigma(A)=\sigma_{r}(A)=\{0\} \).
Hallo, kann mir jemand helfen?