Aufgabe:
(b) Zeigen Sie mittels vollständiger Induktion: Für alle \( n \in \mathbb{N}_{0} \) gilt
\( \sum \limits_{k=0}^{2 n} \mathrm{i}^{k} k=\left\{\begin{array}{ll} n(1-\mathrm{i}), & \text { wenn } n \text { gerade } \\ -(n+1)+n \mathrm{i}, & \text { wenn } n \text { ungerade } \end{array}\right. \)
Sie dürfen dabei die folgenden Identitäten verwenden:
\( \mathrm{i}^{2 n+1}=\left\{\begin{array}{ll} \mathrm{i}, & \text { wenn } n \text { gerade } \\ -\mathrm{i}, & \text { wenn } n \text { ungerade } \end{array} \quad \text { und } \quad \mathrm{i}^{2 n+2}=\left\{\begin{array}{ll} -1, & \text { wenn } n \text { gerade } \\ 1, & \text { wenn } n \text { ungerade } \end{array}\right.\right. \)
Problem/Ansatz:
hätte einer eine Idee wie man diese Aufgabe lösen könnte?