Sei \(h_n(x)=\left(1-\frac xn\right)^n\mathrm e^x\). Nach meinen Berechnungen gilt \(0<h_n(x)<1\) für alle \(x\in(0,n)\) und damit$$\int_0^n\left(1-\frac xn\right)^{3n}\mathrm dx<\int_0^n\left(1-\frac xn\right)^n\mathrm e^{-2x}\,\mathrm dx<\int_0^n\mathrm e^{-3x}\,\mathrm dx,$$$$\frac n{3n+1}<\int_0^n\left(1-\frac xn\right)^n\mathrm e^{-2x}\,\mathrm dx<\frac{1-\mathrm e^{-3n}}3.$$Nun das Sandwichlemma anwenden.