\(z^2 + 2*i*cos(θ)* z + 1=0\)
\(z^2 + 2*i*cos(θ)* z =-1\)
\((z + i*cos(θ))^2 =-1+i^2*cos^2(θ)\)
\((z + i*cos(θ))^2 =-1-cos^2(θ)|\sqrt{~~}\)
1.)\(z + i*cos(θ) =\sqrt{-1-cos^2(θ)}=\sqrt{-1*(1+cos^2(θ))}=\sqrt{i^2*(1+cos^2(θ))}\)
\(z₁ = - i*cos(θ)+i*\sqrt{1+cos^2(θ)} \)
2.)\(z + i*cos(θ) =-\sqrt{i^2*(1+cos^2(θ))}\)
\(z₂ = - i*cos(θ)- i*\sqrt{1+cos^2(θ)} \)