a)
y = x·(x - 3)/((x + 2)^2·(x - 3)) - 1/2
b)
y = (2·x^2 - 4)/(4 - x)^2
y = 2·(x^2 - 2)/(x - 4)^2
Nullstellen
x^2 - 2 --> x = - √2 ∨ x = √2
Polstellen
(x - 4)^2 = 0 → x = 4 (2-fach) → D = R \ {4}
lim (x → 4+) 2·(x^2 - 2)/(x - 4)^2 = ∞
lim (x → 4-) 2·(x^2 - 2)/(x - 4)^2 = -∞
Horizontale Asymptote
lim (x → ±∞) 2·(x^2 - 2)/(x - 4)^2 = 2