Aufgabe:
a) Sei (an) eine gegen a ∈ R konvergente reelle Folge mit an ≥ 0 für alle n ∈ N. Zeigen Sie, dass lim (n gegen unendlich) √an=√a
b) Sei (an) eine reelle Folge mit (nte Wurzel √|an| ≥ 1 für unendlich viele n ∈ N. Zeigen Sie, dass dann die
Reihe Summe über n=1 gegen ∞ (an) divergiert