In dieser Gleichung \(\frac{1}{2}(x+2)^3-1=\sqrt[3]{2(x+1)}-2\) kommt nur \(x\) vor. Und es existiert kein \(x\in\mathbb{R}\) welches die Gleichung erfüllt.
Und das hier$$f(x)=f^{-1}(x)$$heißt, das \(f(x)=x\) sein muss. Das ist zwar eine Gerade, aber mit was soll sich die schneiden?