Aufgabe:
Seien \( U, W \) zwei UVR eines \( K \)-VR \( V \). Zeigen oder widerlegen Sie:
(i) \( U \cup W \) ist ein Untervektorraum von \( V \).
(ii) \( U+W=\{\mathbf{u}+\mathbf{w} \in V: \mathbf{u} \in U \), \( \mathbf{w} \in W\} \) ist ein UVR von \( V \).
Habe keine Ahnung wie ich die Aufgabe lösen soll. Danke im voraus