\(f(x)=6x^2+7x-119\) \(g(x)= x+1\)
Schnittpunkte:
\(6x^2+7x-119=x+1\)
\(6x^2+6x=120\)
\(x^2+1x=20\)
\((x+0,5)^2=20+0,5^{2}=20,25|\sqrt{~~}\)
1.)\(x+0,5=4,5\)
\(x₁=4\)
2.)\(x+0,5=-4,5\)
\(x₂=-5\)
Differenzfunktion:
\(d(x)=f(x)-g(x)=6x^2+7x-119-(x+1)=6x^2+6x-120\)
\(A= \int\limits_{-5}^{4}(6x^2+6x-120)*dx=[2x^3+3x^2-120x] \)
\(A=[2*4^3+3*4^2-120*4]-[2*(-5)^3+3*(-5)^2-120*(-5)] \)
Nun noch ausrechnen.