Wird wohl so sein: \( f(x)=\sqrt{ 2+x } = (2+x)^\frac{1}{2}\)
==> \( f'(x)= \frac{1}{2}(2+x)^\frac{-1}{2}\)
==> \( f''(x)= \frac{-1}{2}\cdot\frac{1}{2}(2+x)^\frac{-3}{2}= \frac{-1}{4}(2+x)^\frac{-3}{2}\)
==> \( f'''(x)= \frac{-3}{2}\cdot\frac{-1}{4}(2+x)^\frac{-5}{2}= \frac{-3}{8}(2+x)^\frac{-5}{2}\)
==> \( f^{(4)}(x)= \frac{-5}{2}\cdot \frac{-3}{8}(2+x)^\frac{-7}{2}= \frac{15}{16}(2+x)^\frac{-7}{2}\)
2. Grades also so
\( T_2(x)= f(0)+f'(0)\cdot x + \frac{f''(0)}{2!}\cdot x^2 \)
\( =\sqrt{2} + \frac{1}{2\sqrt{2}}\cdot x - \frac{1}{16\sqrt{2}}\cdot x^2 \)