Aloha :)
Die Rotation passiert um die \(y\)-Achse, daher wählen wir für die \(x\)- und \(z\)-Koordinate Polarkoordinaten aus und können damit folgenden Ortsvektor zur Abtastung des Volumens angeben:$$\vec r=\begin{pmatrix}r\cos\varphi\\y\\r\sin\varphi\end{pmatrix}\quad;\quad y\in[0;1]\;;\;r\in[0;(y^4-y^5)]\;;\;\varphi\in[0;2\pi]$$Bezüglich der \(x\)- und \(z\)-Richtung wird das Flächenelment durch den Übergang zu Polarkoordinaten verzerrt, was wir durch \((dx\,dz=r\,dr\,d\varphi)\) kompensieren müssen. Das Volumenelement lautet daher:$$dV=dx\,dy\,dz=r\,dr\,d\varphi\,dy$$
Damit können wir ein Integral für das gesuchte Volumen formulieren:$$V=\int\limits_{y=0}^1\;\int\limits_{\varphi=0}^{2\pi}\int\limits_{r=0}^{(y^4-y^5)^2}\,r\,dr\,d\varphi\,dy=\int\limits_{\varphi=0}^{2\pi}d\varphi\int\limits_{y=0}^1\left(\int\limits_{r=0}^{(y^4-y^5)}r\,dr\right)\,dy$$$$\phantom V=\left[\varphi\right]_{\varphi=0}^{2\pi}\cdot\int\limits_{y=0}^1\left[\frac{r^2}{2}\right]_{r=0}^{(y^4-y^5)}dy=2\pi\int\limits_{y=0}^1\frac{(y^4-y^5)^2}{2}\,dy=\pi\int\limits_{y=0}^1\left(y^8-2y^9+y^{10}\right)\,dy$$$$\phantom V=\pi\left[\frac{y^{9}}{9}-\frac{2y^{10}}{10}+\frac{y^{11}}{11}\right]_{y=0}^1=\pi\left(\frac{1}{9}-\frac{1}{5}+\frac{1}{11}\right)=\frac{\pi}{495}$$