Aufgabe
Text erkannt:
Gegeben sei das Polynom f(X) = 2X3 −X +1. Für eine Algebra A über einem
Körper K liefert f eine Funktion A → A.
Sei \( C^{\infty}(\mathbb{R}, \mathbb{R}) \) der \( \mathbb{R} \)-Vektorraum der beliebig oft differenzierbaren Funktionen \( \mathbb{R} \rightarrow \mathbb{R} \) and \( D \in \operatorname{End}_{\mathbb{R}}\left(C^{\infty}(\mathbb{R}, \mathbb{R})\right) \) die durch die Ableitung gegebene \( \mathbb{R} \)-lineare Abbildung
\( D: C^{\infty}(\mathbb{R}, \mathbb{R}) \longrightarrow C^{\infty}(\mathbb{R}, \mathbb{R}), \quad \varphi \longmapsto \varphi^{\prime} \)
Die Funktionen \( \sin : \mathbb{R} \rightarrow \mathbb{R} \) und \( \cos : \mathbb{R} \rightarrow \mathbb{R} \) liegen in \( C^{\infty}(\mathbb{R}, \mathbb{R}) \) mit \( D(\sin )=\cos \) und \( D(\cos )=-\sin \). Bestimmen Sie \( f(D)(\cos -\sin ) \)
Problem/Ansatz:
Meiner Vermutung ist, dass F(D)*(Cos-sin) :( -sin-cos) ist, da D ja die Ableitung ist. weiß aber nicht ob die überlegung stimmt