Aufgabe:
Was ist die Ableitung der Funktion ?
Problem/Ansatz:
Text erkannt:
Minimum vohr
\( \begin{aligned} v(b) & =\left|b x_{1}+a-y_{1}\right|+\left(b x_{2}+a-y_{2}\right)^{2}+\left(b x_{3}+a-\left.y_{3}\right|^{2}\right. \\ & \left.=\mid \bar{y}-b \cdot \bar{x}+b x_{1}-y_{1}\right)^{2}+\left(\bar{y}-b \bar{x}+b x_{2}-\left.y_{2}\right|^{2}+\mid \bar{y}-b \cdot x-b x_{3}-y_{3}\right)^{2} \\ & =b\left(x_{1}-\bar{x} \mid-\left(y_{1}-\bar{y} \|^{2}+b\left(x_{2}-\bar{x}|-| y_{2}-\bar{y}\right)^{2}-b\left(x_{3}-\bar{x}\right)-\left(y_{3}-\bar{y} \|^{2}\right.\right.\right. \end{aligned} \)