\( \frac{d}{d t}\left(-1.6\left(t^{2}+8 t+32\right) e^{-0.25 t}+51.2\right)\\=0.4 e^{-0.25 t} t^{2} \)
Schritt für Schritt:
\( \frac{d}{d t}\left(-1.6\left(t^{2}+8 t+32\right) e^{-0.25 t}+51.2\right) \\ =-1.6((2t+8)e^{-0.25t}+(t^2+8t+32)(-0.25)e^{-0.25t})\\=-1.6e^{-0.25t}(2t+8-0.25t^2-2t-8)\\=-1.6e^{-0.25t}(-0.25t^2)\\=0.4 e^{-0.25 t} t^{2} \)